

MATLAB-PGSL Version 1.0

User Manual and Source Code Documentation

July 9, 2010

Copyright © Benny Raphael 2010

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

1. Introduction

The MATLAB version of PGSL (MATLAB-PGSL) was developed by porting the C
version of PGSL 4. Since the Matlab interface to C programs run very slowly due to the
overheads involved in loading DLLs (Dynamic Link Libraries), the PGSL code was
translated into native Matlab syntax. An important consideration in developing the
Matlab code was that it should be fully compatible with GNU Octave. This is to ensure
that people using this freeware are able to run their optimization programs without
performing any additional steps for portability.

The MATLAB version is not a line-to-line translation of the C code due to many reasons.
Matlab is interpreted and does not run as fast as C code. Therefore, some parts of the
code had to be modified to improve the speed (for example, some operations on
individual array elements were replaced with array functions). However, no claim is
made that the code is fully optimized for Matlab.

2. Installation

In order to install MATLAB-PGSL, simply unzip the zip file, MATLAB-PGSL.zip to an
appropriate folder. In Matlab or GNU Octave change the working directory to the PGSL
folder using the command cd and you are ready to run PGSL.

3. Using MATLAB-PGSL

Using MATLAB-PGSL is very similar to the C version of PGSL 4. There are three key
steps involved:
• Define the optimization (search) variables
• Specify the PGSL parameters
• Define the Objective function

Defining the optimization variables involves specifying their lower and upper bounds as
well as the precision. These are specified as arguments to the function
ProblemSetup_create.

The PGSL parameters can be assigned default values by simply specifying the maximum
number of evaluations of the objective function. In addition, you need to specify the
threshold, which is the minimum value of the objective function below which
optimization terminates. These parameters are also specified as arguments to the function
ProblemSetup_create.

This function is called using the following syntax:

setup = ProblemSetup_create(bmin, bmax, prec, numeval,
threshold);

where,
• bmin is an array containing the lower bound for all the optimization variables
• bmax is an array containing the upper bound for all the optimization variables
• prec is an array containing the precision of all the optimization variables
• numeval is an integer that specifies the maximum number of evaluations of the

objective function
• threshold is the minimum value of the objective function below which optimization

terminates

The above function returns a structure of type ProblemSetup. The structure is described
in more detail in Section 4.1.1. The structure represents the optimization problem and
contains all the information that is needed to run the optimization.

The objective function is defined as a Matlab function with two arguments. The first
argument is the ProblemSetup structure representing the optimization problem. The
second argument is an array containing the values of optimization variables proposed by
PGSL. This array represents a potential solution to be evaluated by the objective
function. The objective function returns a real number which is the evaluation of the
objective function.

A sample objective function is shown below.

In the above example, test_parabola_objective is the name of the objective function.
The second argument x contains the optimization variables which are assigned to local
variables x1 and x2. The return value of the objective function ret is the sum of the
squares of the values of the optimization variables.

The name of the objective function is arbitrary and is left to the preference of the user.
The name of the function that is to be optimized is specified by assigning the function
pointer to the attribute costFunction of the structure ProblemSetup. This is illustrated
using the following code:

function ret = test_parabola_objective (setup, x)

 x1 = x(1);
 x2 = x(2);

 ret = x1*x1 + x2*x2;

end

setup = ProblemSetup_create(bmin, bmax, prec, numeval, threshold);
setup.costFunction = @test_parabola_objective;

Finally, the optimizer is invoked by calling the function PGSL_findMinimum. The
function takes a single argument which is the structure ProblemSetup containing the
representation of the optimization problem. This function implements the PGSL
algorithm and calls the user defined objective function repeatedly during the course of
searching for the minimum. The function returns when either of the following conditions
is met:

• The maximum number of evaluations of the objective function is reached
• The objective function value has become less than the threshold

When the function returns, the best solution is stored in the attribute minimumPoint of the
structure ProblemSetup.This attribute is of type structure Point.The structure Point
contains the following attributes:

• x – an array of real numbers which contains the values of optimization variables
• y – a real number that stores the evaluation of the point

The complete code for solving a sample optimization problem is shown below:

function ret = test_parabola ()

 bmin = [-100 -100];
 bmax = [100 100];
 prec = [0.001 0.001];

 % The number of evaluations
 numeval = 200 ;

 % The threshold of the objective function
 threshold = -1;

 setup = ProblemSetup_create(bmin, bmax, prec, numeval,
threshold);
 setup.costFunction = @test_parabola_objective;

 setup = PGSL_findMinimum(setup);

 % Print the results
 fprintf(1, ' Minimum found %f\n', setup.minimumPoint.y);
 fprintf(1, ' Variable values\n');
 fprintf(1, 'x1 \t %f \n', setup.minimumPoint.x(1));
 fprintf(1, 'x2 \t %f \n', setup.minimumPoint.x(2));

 ret = setup;

end

3.1 Testing PGSL

There are two test functions provided. These are
• test_parabola
• test_F8

3.1.1 test_parabola

This function tests a simple quadratic problem in two variables. The code can be found in
test_parabola.m. The lower and upper bounds of all the variables are -100 and +100
respectively. The precision of variables is set to 0.001. The maximum number of
evaluations of the objective function is set to 400. These parameters can be changed in
the file test_parabola.m and the function can be executed by running the command
test_parabola in Matlab.

You will find an output similar to the following

The actual results will vary from one run to the next. More accurate values can be
obtained by increasing the maximum number of evaluations and changing the precision.
The theoretical minimum is 0 and the values of x1 and x2 are 0.

3.1.1 test_F8

This tests the Griewank’s function. This function needs to be called with one argument,
that is, the number of variables. For example, like this:

test_F8(2)
For larger problem sizes, it takes quite a lot of time to complete since the number of
evaluations of the objective function has been set to 10000 * numvars. Since Griewank’s
function has many local minima it takes quite a number of iterations to converge.

The objective function is defined in the file test_F8_objective.m.

 Num eval 402
 Minimum found 0.000023
 Variable values
x1 0.004831
x2 0.000193

4. Source code documentation

PGSL code is organized into several functions which are stored in .m files in the PGSL
folder. The following naming conventions are used:

• All the functions ending with _create are the equivalents of constructors in object
oriented programming. These functions return a structure after initializing the
attributes

• All the functions starting with the name of a structure followed by an underscore
are the equivalent of member functions (methods) in object oriented
programming. For example, the function PAxis_indexOf represents the method
indexOf in the structure PAxis.

4.1 Data Structure

The structures that are used in MATLAB-PGSL are described in this Section.

4.1.1 Structure ProblemSetup
The structure represents an optimization problem. The attributes of this structure are
summarized in the following table.
Attribute Data type Description
numvars Integer The number of variables in the optimization

problem
maxNumEvaluations Integer Maximum number of evaluations of the

objective function
threshold Real The threshold of the objective function below

which search terminates
lowerBounds Array of real lower bounds of variables
upperBounds Array of real upper bounds of variables
axes Array of

structure
PAxis

The axis representing each variable

NS Integer PGSL parameter NS, number of iterations in the
sampling cycle

NPUC Integer PGSL parameter NPUC, number of iterations in
the probability updating cycle

NFC Integer PGSL parameter NFC, number of iterations in
the focusing cycle

NSDC Integer PGSL parameter NSDC, number of iterations in
the subdomain cycle

useStartPoint Integer The user should set the following variable to 1,
if an initial starting point is to be used

numEvaluations Integer The number of evaluations of the objective
function so far

iSDC Integer Number of iterations in the subdomain cycle
completed so far

iS Integer Number of iterations in the current sampling
cycle completed so far

restart Integer An internal variable. This variable is set to non-
zero whenever there is a restart after
convergence

minimumPoint Structure
Point

The best solution found so far

backupMinimumPoint Structure
Point

An internal variable. This variable stores the
previous best minimum point when a restart
occurs after convergence

costFunction Function
pointer

The pointer (handle) to the objective function.
User should assign his objective function to this
variable

4.1.2 Structure PAxis

This structure represents an axis or a search dimension corresponding to a variable. The
attributes of this structure are summarized in the following table.

Attribute Data type Description
min Real Lower bound for the variable
max Real Upper bound for the variable
precision Real Precision of the variable
intervals Array of real A set of values of the variable at which

probabilities are computed for storing the PDF
as a histogram

prob Array of real Probabilities corresponding to the intervals
cdf Array of

Real
The cumulative distribution function
corresponding to the intervals

4.1.2 Structure Point

This structure represents a solution point. The attributes of this structure are summarized
in the following table.

Attribute Data type Description
x Array of real The values of the optimization variables
y real The evaluation of the point

4.2 Functions

4.2.1 PAxis_calculateCDF

Function prototype:
function ret = PAxis_calculateCDF (axis)

This function computes the CDF of the PDF of a variable. The argument to the function
is a variable of type structure PAxis. Returns an array of real which is the CDF.

The function sums the probabilities and normalizes by dividing by the total. This is an
internal function and may not be called directly by the user.

4.2.2 PAxis_create

Function prototype:
function ret = PAxis_create (min, max, precision)

This function is the constructor for creating the PAxis structure. The first argument is the
lower bound of the variable. The second argument is the upper bound of the variable. The
return value is a variable of type structure PAxis.

The function initializes the variables and creates a PDF which is uniformly distributed
between the lower and upper bounds.

4.2.3 PAxis_indexOf

Function prototype:
function ret = PAxis_indexOf (axis, x)

This function returns the index of the interval in which a number lies. Argument axis is a
variable of type structure PAxis. Argument x is the value of the variable that is to be
located. The return value is the index of the interval in which the number lies. The index
starts from 1.

This is an internal function and may not be called directly by the user.

4.2.4 PAxis_valueForCDF

Function prototype:
function ret = PAxis_valueForCDF (axis, t)

This function returns the value of the variable for a specified value of CDF. The
argument axis is of type structure PAxis. The argument t is the value of the CDF for the
which the value of the variable needs to be computed. The return value is a real number
within the lower and upper bounds of the variable.

This is an internal function and may not be called directly by the user. The function
locates the interval in which the CDF value lies and then interpolates between the bounds
of the interval.

4.2.5 PGSL_computeWeightedAverage

Function prototype:
function ret = PGSL_computeWeightedAverage (axis, points)

This function returns the weighted average of the value of a variable for the best five
solution points obtained in previous focusing cycles. The argument axis is an integer
representing the index of the variable. The argument points is an array of structure Point.
The array contains the previous five points.

The return value of the function is a real number which is the weighted average of the
values of the variable.

This is an internal function and may not be called directly by the user. The function is
called by the PGSL routine PGSL_doSubdomainCycle.

4.2.6 PGSL_divideInterval

Function prototype:
function ret = PGSL_divideInterval (axis, index, pvalue, mindx, amin, amax,
probBestInterval)

The function updates the PDF of a variable by sub-dividing the best interval as described
in the PGSL algorithm.

The argument axis is of type structure PAxis. The argument index is the index of the best
interval. The argument pvalue is the pivot value about which division takes place (the
best value of the variable). The argument mindx is the minimum interval width. The
arguments amin and amax are the upper and lower bounds of the variable. The argument
probBestInterval is the probability to be assigned to the best interval.

The return value of the function is of type structure PAxis. The return value is a new axis
for the variable with updated PDF.

This is an internal function and may not be called directly by the user.

4.2.7 PGSL_doSubdomainCycle

Function prototype:
function ret = PGSL_doSubdomainCycle (setup)

The function performs the subdomain cycle as described in the PGSL algorithm. The
argument setup is of type structure ProblemSetup. The function returns the updated
ProblemSetup structure.

This is an internal function and may not be called directly by the user.

4.2.8 PGSL_doFocusingCycle

Function prototype:
function ret = PGSL_doFocusingCycle (setup, minBound, maxBound, startPoint)

The function performs the focusing cycle as described in the PGSL algorithm. The
argument setup of type structure ProblemSetup. The arguments minBound and
maxBound are arrays containing lower and upper bounds of variables. The argument
startPoint is of type structure Point and is the starting point for the focusing cycle. The
starting point is randomly generated except when it is specified by the user.

The return value of the function is of type structure ProblemSetup which is the updated
problem setup.

This is an internal function and may not be called directly by the user.

4.2.9 PGSL_doRestart

Function prototype:
function ret = PGSL_doRestart (setup, minimumPoint)

The function re-initialises all the axes after the focusing cycles has converged. The
argument setup is of type structure ProblemSetup. The argument minimumPoint is of
type Point. It is the best point found so far. The function returns the updated structure
ProblemSetup.

This is an internal function and may not be called directly by the user. The function stores
the minimumPoint in the variable setup.backupMinimumPoint. The previous point is
replaced if the new point is better. Then all the axes are reset to start with the original
uniform PDF.

4.2.10 PGSL_ findMinimum

Function prototype:
function ret = PGSL_findMinimum (setup)

This function is the main entry point to PGSL and is called by the user. This should be
called after creating the ProblemSetup structure, setting all the parameters, defining the
cost function, etc. The argument setup is of type structure ProblemSetup.

The function executes the PGSL algorithm, locates the minimum point and returns the
updated ProblemSetup structure. This structure contains the minimum point found in the
search.

4.2.11 PGSL_generatePoint

Function prototype:
function ret = PGSL_generatePoint (setup, point)

The function generates a random solution point according to the current PDF. The
argument setup is of type structure ProblemSetup. The argument point is of type structure
Point.

The return value of the function is of type structure Point. It has randomly generated
values for all the variables. The objective function is called to compute the y value of the
point.

This is an internal function and may not be called directly by the user.

4.2.12 PGSL_getIntervals

Function prototype:
function ret = PGSL_getIntervals (axes, pt)

The function is used by PGSL to locate the best intervals containing the values of
variables in a newly generated point. The argument axes is an array containing elements
of type structure PAxis. The argument pt is of type structure Point.

The function returns an array of integers. Each integer is the index of the interval
corresponding to the value in the point pt

This is an internal function and may not be called directly by the user.

4.2.13 PGSL_hasConverged

Function prototype:
function ret = PGSL_hasConverged (axes)

The function is called by PGSL to determine whether all the axes have converged during
the subdomain cycle. It checks for convergence by examining the minimum and
maximum of each axis. The function returns either 1 or 0. 1 denotes convergence.

This is an internal function and may not be called directly by the user.

4.2.14 PGSL_narrowDown

Function prototype:
function ret = PGSL_narrowDown (setup, points, numpoints)

The function reduces the subdomain size as described in the PGSL algorithm.
The argument setup is of type structure ProblemSetup. The argument points is an array
containing elements of type structure Point. It contains up to 5 previous best points. The
argument numpoints is an integer storing the number of previous best points saved in the
array points.

The function returns an array containing the updated axes of all the variables.

This is an internal function and may not be called directly by the user.

4.2.15 PGSL_resetAxes

Function prototype:
function ret = PGSL_resetAxes (setup)

The function resets the bounds of every variable according to the original values after a
convergence. The argument setup is of type structure ProblemSetup. The function
returns the new array of updated axes.

This is an internal function and may not be called directly by the user.

4.2.16 PGSL_resetAxes

Function prototype:
function ret = PGSL_sortBestPoints (numPoints, points, newpoint)

The function inserts a new point in the sorted array of 5 best points maintained by PGSL
to avoid premature convergence. The argument numPoints is an integer storing the
number of points already in the array points. The argument points is an array of structure
Point. It contains the existing best points. The argument newpoint is of type structure
Point. It contains a new point to be added to the array.

The function returns the updated array of points

The function inserts the new point in the sorted order in the array.

This is an internal function and may not be called directly by the user.

4.2.17 PGSL_updateIntervals

Function prototype:
function ret = PGSL_updateIntervals (setup, iFC, prevBestPoint, minBound, maxBound)

The function updates the intervals of the PDF, during the focusing cycle of PGSL. The
argument setup is of type structure ProblemSetup. The argument iFC, is current iteration
in the focusing cycle. if it is zero, the previous point is dummy and is not used to update
the intervals. The argument preBestPoint is of type Structure Point, the best point found
in the previous cycle. The arguments minBound, maxBound are the lower and upper
bounds of the variable.

The function returns the array containing the updated structure PAxis

This is an internal function and may not be called directly by the user.

4.2.18 PGSL_updateProbability

Function prototype:
function ret = PGSL_updateProbability (setup, bestIntervals, negpt)

The function updates the intervals of the PDF, during the probability updating cycle of
PGSL. The argument setup is of type structure ProblemSetup. The argument bestIntervals
is an array of integers storing the index of intervals containing the best values of variables
The argument negpt is of type structure Point. It represents a negative point - a point that
is inferior to the current best

The function returns the array containing the updated structure PAxis

This is an internal function and may not be called directly by the user.

4.2.19 ProblemSetup_updateMinimum

Function prototype:
function ret = ProblemSetup_updateMinimum (setup, newpoint)

This function updates the best minimum point found so far. The argument setup is of type
structure ProblemSetup. The argument newpoint is of type structure Point. It is a new
point that has been evaluated already.

The function returns the minimum point found so far. Before calling this function, the
variable setup.numEvaluations should be incremented.

This is an internal function and may not be called directly by the user.

